Figure 3.12 Bench-top stability test calibration curve of propranolol in	103
serum.	
Figure 3.13 Autosampler stability test calibration curve of propranolol in	104
serum.	
Figure 3.14 Propranolol concentrations versus mean area ratios for each	106
concentration of standard points.	
Figure 3.15 A processed blank serum sample.	110
Figure 3.16 A processed zero serum sample spiked with sildenafil; the	110
internal standard of propranolol analysis.	
Figure 3.17 A processed lower limit of quantification (50 ng/ml) for	111
serum sample spiked with sildenafil; the internal standard of propranolol	
analysis.	
Figure 3.18 A processed upper limit of quantification (3000 ng/ml) for	111
serum sample spiked with sildenafil; the internal standard of propranolol	
analysis.	
Figure 3.19 In vivo serum concentration versus time curves of	112
propranolol in rats after a single oral dose of 20 mg/kg of propranolol,	
propranolol with 100 and 200 mg/kg of glucosamine. Each data point	
represents the mean \pm SEM (n=7).	
Figure 3.20 In vivo serum concentration versus time curves of	113
propranolol in rats after a single oral dose of 20 mg/kg of propranolol,	
propranolol with 5 and 9 mg/kg of cimetidine and rifampin, respectively.	
Each data point represents the mean \pm SEM (n=5).	
Figure 3.21 Observed versus SimCYP-predicted propranolol plasma	116
concentrations of 20 mg/kg propranolol, propranolol with 100 mg/kg	
glucosamine and propranolol with 200 mg/kg glucosamine.	
Figure 3.22 Time dependence curves of propranolol serum	118
concentration in rats using <i>in situ</i> single pass intestinal perfusion. Rats	
were administered propranolol alone 1 mg/ml, propranolol with	
glucosamine s10 mg/ml, propranolol with cimetidine 1 mg/ml, and	